太陽光発電設備の処分に着目したライフサイクル評価

1915008 岩崎 瑠南 指導教員 石川 春乃

太陽光発電設備 CO2排出量 リサイクル

LCA FIT 制度

1 はじめに

2022 年「電気事業者による再生可能エネルギー電気の調達に関する特別措置法」の施行により、再生可能エネルギー固定価格買取制度 (FIT) がスタートし、太陽光発電設備が一般住宅に大量に導入された。一方、太陽光発電設備の寿命は一般的に 20 年とされ、FIT 開始以降の急速な普及状況から、将来的な大量処分が想定される。

本研究では、住宅用太陽光発電設備の製造前調達時と使用 後処理の処分時に着目し、ライフサイクル CO₂排出量の把握 により、リサイクルによる環境負荷削減効果を明らかにする ことを目的とする。

2 評価手法

まず、評価条件として、設備仕様、ライフサイクル工程の 分類を設定する。その工程種別の CO₂排出量を算定し、検討ケースごとの削減量差の年次推計によって評価を行い、静岡県 の目標値との比較を行う。

表 2 に、評価対象とする太陽光発電設備仕様を示す。評価 には 2012 年設置当時の設備仕様を用いる。評価対象地域範 囲は、日照環境に恵まれた静岡県とする。

表 2 太陽光発電設備の設定仕様

設備用途	住宅専用			
太陽電池種類	多結晶Si太陽電池			
設備用途構成機器	太陽電池モジュール、パワーコンディショナ、 接続箱、架台			
設備出力規模	3.5kW(住宅用太陽光発電設備標準出力)			
設備効率	0. 75			
モジュール寸法	1, 326mm × 1, 008mm			
モジュール枚数	21枚			
設置形態	傾斜屋根上への架台設置型			
設置方向	真南			
傾斜角度	仰角30度			
使用年数	20年 (パワーコンディショナは10年で交換)			

図1に、ライフサイクルの全工程と段階種別を示す。新規素材のみで「製造」し耐用年数使用後、最終段階「回収」埋立を case1、リサイクルを case2 と分類する。また、新規素材と再生素材をあわせて「製造」し耐用年数使用後、最終段階の「回収」の埋立を case3、リサイクルを case4 とする。

図1 ライフサイクルの全工程と種別

ケース別評価は、工程種別ごとにインベントリ分析を用い

て行う。本研究では、いずれのケースも「製造」、「導入」、「使用」の工程が同一であるため合算比較の対象外とし、リサイクルを行わない『従来』と、現時点で可能な廃棄設備部位の全量をリサイクルした場合の『促進案』の2案を比較する。

調達時と処分時については、一般社団法人日本電機工業会の LC-CO₂排出量簡易算出手法¹¹ の試算式(1)を用いた。

調達時・処分時のCO2排出量(t-CO2)

= 素材別質量(t) × 素材別排出係数(t-C0₂/t)…(1)

表3に太陽光発電設備の構成素材と素材別質量を示す。設備仕様は、2012年当時の値をメーカーカタログ²⁾から採用した。

表 3 太陽光発電素材別構成量

設備構成機器		構成素材	素材別質量(t/ユニット*)	
	セル	結晶シリコン	0. 01129	
フロントカバ		ガラス	0. 21	
モジュール	フレーム	アルミニウム	0. 05261	
	電極材料	銅/はんだ	0. 0022	
	その他	EVA/プラスチック	0. 05932	
パワーコンディショナー		鉄	0. 0052	
		銅	0.001	
		アルミニウム	0. 0026	
		エポキシ樹脂	0.0039	
接続箱		鉄	0. 00136	
		アルミニウム	0.0003	
	H4000000000	絶縁材料	0. 00068	
	架台	亜鉛めっき銅板	0. 208	

ユニット*: 3.5kw 出力を1ユニットとする。

表 4 に『従来』と『促進案』の構成素材の処分率と再生率 を示す。処分と再生の割合は、既往研究³⁾を参考とした。

表 4 構成素材の処分率と再生率の設定

構成素材		処分率	再生率	処分・再生設定
セル原料	従来	100%	= =	回収不可能
	促進	30%	70%	-
基盤ガラス	従来	100%		再生せず全量廃棄処理
	促進	10%	90%	回収ルート確立よりカレットとし再生
アルミフレーム	従来	30%	70%	アルミサッシ再生率(現状)
	促進	-	100%	回収ルート確立より全量再生
電極材料	従来	100%		再生せず全量廃棄処理
	促進	-	100%	全量を回収・リサイクル
プラスチック	従来	100%	=	端子ボックス以外は回収不可能
	促進	35%	65%	全量をマテリアルリサイクル
産業廃棄物(鉄)	従来	9%	88%	金属くずの中間処理時に3%減量化
産業廃棄物(銅)	従来	-	100%	全量を回収・リサイクル
産業廃棄物(樹脂)	従来	100%	-	基盤、絶縁体は不回収

『従来』と『促進案』の排出係数は同値としている。新規素材は参考文献 4) 5) の合算値、再生素材は参考文献 4) の値とした。

回収時については、経済産業省・国土交通省のロジスティクス分野における CO₂排出量算定方法共同ガイドライン ⁶⁾ の 試算式(2)を用いた。

回収時のCO。排出量(t-CO。) = 輸送距離(km) × 製品質量(t)

× 燃料使用原単位(l/t·km) × 0.001(kl/l) × 単位発熱量(GJ/kl) × 排出係数(t-C/GJ) × 3.666(t-CO2/t-C)···(2)

輸送距離について、埋立は、県内に唯一の管理型最終処分 場A社が県内全ての処分を受け入れると仮定した。本研究で は、現在より 20 年前の平成 14 年の静岡県各自治体の世帯数 7に各自治体役場から A 社工場までの距離を乗算したものに、 同年同自治体の世帯数で除した値、84kmと設定した。リサイ クルは、県内で太陽光発電設備のリサイクル処理施設を有す るB社、C社にヒアリング調査を行い、輸送距離を算出した。 調査より、処理実績値(t)と搬入元から処理場までの距離(km) を乗算し、輸送トンキロ(t·km)を算出した。この輸送トンキ ロ(t·km)から処理実績値の総量(t)を除した値、9.134kmと設 定した。

燃料使用原単位、単位発熱量、排出係数について、燃料: ガソリン、最大積載量:軽貨物車、積載率:100%と設定し、 省エネ法告示の CO₂排出係数の表 6 よりそれぞれ 0.324(Q/t・ km)、34.6(GJ/kl)、0.0183(t-C/GJ)とする。

年度ごとの静岡県の一般住宅太陽光発電設備の導入戸数 7 に、①の結果より算出した、ケースごとの CO2排出量を乗算し 算出した。case1 から『従来』case2 を引いた処分差の累積、 case1 から『従来』case3 を引いた調達差の累積を算出した。 『促進案』も同様である。

県の参考文献®におけるCO2排出量削減目標(2013年比)は、 2030年には53.4%、2050年には0%である。この目標値と② の結果より算出した、2030年の case1 に対する『促進案』の case2~4の削減割合を比較する。

3 評価結果

図 2 に、ケースごとの一戸当たりの CO2排出量を示す。い ずれのケースも回収時の CO2排出量が少ないことが分かった。 工程種別ごとの差では、『従来』の値に比べ、リサイクルを促 進させることにより、いずれの工程も約2倍のCO2削減効果 が見られた。ケース別では、case4 は case2・3 に比べ、約2 倍の差が見られた。以上より、調達時と処理時でリサイクル 処理をすると全体で約2倍のCO2排出量を減少させることが 分かった。

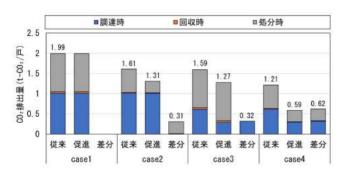


図2 ケースごとの一戸当たりの CO2 排出量

図3に、case1に対する工程種別CO2削減量差の年度推計を

示す。現状は、県内の管理型最終処分業者のヒアリング調査 より、太陽光発電設備がリサイクルされていると仮定する。 現在(2022年)では、case1と比べ『従来』の case4 は(2013 年比)約4,000(t-CO2)程度の削減ができている。2030年には、 case1 と比べ『促進案』の case4 は、(2013 年比)約 40,000 (t-CO2) 削減できることが分かった。

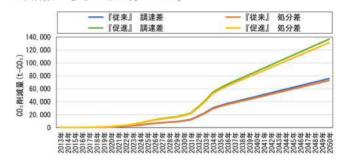


図3 工程種別ごとの CO2削減量差の年度推計

図4に、県の目標値と2030年のcase1に対する『促進案』 の CO₂削減量割合の比較を示す。2030 年の case1 に対する『促 進案』の削減割合は、case2:約66%、case3:約64%、case4: 約30%である。いずれのケースも現在(2022年)では、目標 値を達成できているが、最も削減割合が大きい『促進案』の case4 を採用しても、2039 年には目標値を上回る。

図4 CO₂削減量割合の比較

4 まとめ

現在(2022年)では、case1と比べ、(2013年比)約4,000(t-CO2)程度の削減ができているといえる。2030 年には、case1 と比べ、『促進案』の case4 は、CO2排出量(2013 年比)約 20,000(t-CO2)、CO2排出割合(2013年比)約30%削減できる。 現在(2022 年)での削減割合は県の目標を達成しているが、 2050年に向けて目標値が年々下がるため、2039年に目標割合 不達となる。これより、2039年を目処に更に削減幅の大きい 案に移行していく必要がある。

【参考文献】

1)(一社)日本電機工業会:LC-CO2排出量簡易算出手法,2017.7

2)パナソニック株式会社:太陽電池モジュール製品情報,2011.1

3) NEDO: 太陽光発電システム共通基盤技術研究開発, 2009.3

4) 環境省: サプライチェーンを通じた組織の温室効果ガス排出等の算定のた

めの排出原単位データベース(Ver. 3.2), 2022.3

5)電力中央研究所:日本における発電技術のライフサイクル CO2排出量総合

評価, p. 20, 表 4.3 素材の CO₂排出原単位, 2016.7

6)経済産業省・国土交通省:ロジスティクス分野における CO:排出量算定方 法共同ガイドライン Ver. 3.1, 2016.3

7)総務省:住民基本台帳に基づく人口動態及び世帯数調査,2012.8

8) 静岡県: ふじのくにエネルギー総合戦略, 2022.3