ヒンジリロケーション機構を有する RC 扁平梁の構造実験

逆対称梁実験	ヒンジリロケーション	機械式継手
プレキャスト	機械式定着	扁平梁

1. はじめに

高層建築物における鉄筋コンクリート架構では、品 質・生産性の向上に寄与するプレキャストコンクリート (PCa)工法の需要が高まっている。さらに梁降伏先行型の 全体崩壊形を目標とする高層建築物では、梁には優れた 靭性能、柱梁接合部には損傷低減が求められる。そこで、 梁端部を梁一般部より強度を上げ、接合部の塑性化を防 ぎ靭性能を有するヒンジリロケーション(HR)機構が検 討・開発されてきた¹⁾。

本研究では機械式継手および機械式定着したカットオフ筋により,HR機構(図1)さらに,空間の有効活用を目的とする若干の扁平梁(図2)を採用した。

2. 実験概要

2.1 試験体概要

試験体諸元を表1に、試験体形状・配筋の一例を図3 に示す。一段筋に強度・径が異なる主筋を機械式継手に より繋ぎ、カットオフした二段筋の一部に機械式定着具 を施す HR 機構である。高層集合住宅における梁の約1/2 スケールを想定し、ヒンジ計画位置(継手先端)はスタ ブ面から320mmの計6体の逆対称加力実験を行った。基 準試験体(No.1)は断面寸法(b:梁幅×D:梁せい)を 400mm×350mmの扁平梁、コンクリート設計強度 Fc を 48N/mm²、内法スパンLを2200mmとした。パラメータ は曲げ曲げ余裕度(端部曲げ強度/一般部曲げ強度)、せ ん断スパン比、補強筋比、片側HRである。本試験では曲 げ曲げ余裕度を1.25以上、入力せん断応力度レベル τ_u/σ_B を 0.040 程度で各試験体とも概ね同じとした。

学籍番号	1915043	鳥居	太樹
	指導教員	丸田	誠

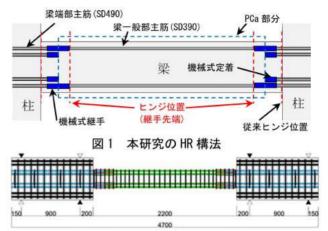
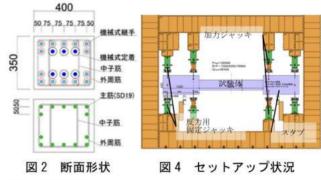



図3 試験体形状・配筋の一例

2.2 載荷方法

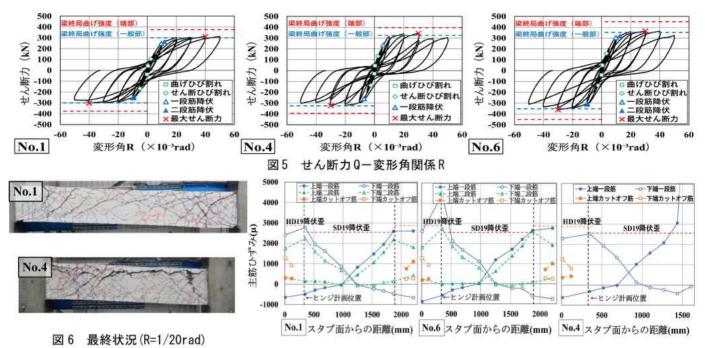

セットアップ状況を図4に示す。サイクルは変形角で 制御し,変形角±1/800rad~1/20radの正負交番漸増繰り 返し載荷とした。

表1 試験体諸元

	試	験体名			No.1	No.2	No.3	No.4	No.5	No.6	
	梁幅×梁せい		b×D	mm	400×350	400×350	400×350	400×350 400×350		360×400	
	内法スパン		L mm		2200	2200	2200	1600	2200	2200 2200	
P ⁱ	内法スパン(継手先	端)	Ľ	mm	1560	1560	1560	1280	1560	1560	
+	せん断スパン(継手タ	に端)	M/Q mm		1100, (760)	1100, (760)	1100, (760)	960, (640)	1100, (760)	1100, (760)	
せ	ん断スパン比(継手	先端)	M/Qd		4.03, (2.66)	4.03, (2.66)	4, (2.66)	3.91, (2.13)	3.91, (2.53)	3.41, (2.26)	
	設計強度		Fc N/mm ²		48	48	48	48	30	48	
	コンクリート圧縮強	復度	σв	N/mm ²	53.1	53.1	53.7	53.9	34	52	
	主筋	配筋			(5+2)-HD19 530.7	(5+2)-HD19	(5+2)-HD22	6-HD19	5-HD19	(5+2)-HD19	
	土肋	降伏強度	σy	N/mm ²		530.7	537	530.7	530.7	530.7	
端部	ナートナコが	配筋			3-HD22	3-HD22	3-HD22	4-HD19	3-HD19	3-HD22	
_	カットオフ筋	降伏強度	σy	N/mm ²	537.00	537.00	537.00	530.70	530.70	537.00	
	引張鉄館	pt	%	2.90	2.90	3.52	2.56	2.04	2.73		
	主筋	配筋			(5+2)-SD19	(5+2)-SD19	(5+2)-SD19	6-SD19	5-SD19	(5+2)-SD19	
一般部	土:用力	降伏強度	σy	N/mm ²	441.8	441.8	441.8	441.8	441.8	441.8	
	引張鉄舶	防比	pt	%	1.75	1.75	1.75	1.43	1.19	1.66	
	14.7 145-547-66-655	配筋			4-S6@65	4-S6@80	4-86@65	4-S6@55	4-D6@50	4-S6@65	
端部	せん断補強筋	降伏強度	σy	N/mm ²	916	916	916	916	313.4	916	
	せん断補強	pw	% 0.49		0.40	0.40 0.49		0.63	0.54		
一般部	山口原始的	配筋			4-S6@80	4-S6@80	4-S6@80	4-S6@55	4-D6@60	4-S6@80	
	せん断補強筋	降伏強度	¥伏強度 σy		916	916	916	916	313.4	916	
	せん断補売	pw	%	0.40	0.40	0.40	0.58	0.53	0.44		

※2 配筋のカッコ内は、左:一段筋本数、右:二段筋本数

Structural Performance on RC wide Beam using Hinge Relocation Method

実験結果・考察

3.1 せん断力 Q-変形角 R 関係

代表的試験体のせん断力 Q-変形角 R 関係を図5に, 最終状況を図6に,実験結果および計算値を表2に示す。 全ての試験体において R=1/20rad まで脆性的な破壊はせず, 最大耐力 Q_{max}の 85%以上を保持し,安定した紡錘型の履 歴性状を示した。だが, No.4 は R=1/33rad 以降において, 上端一段筋に沿ってひび割れが生じ,付着割裂の様相を 示し,スリップ型の履歴性状を確認した。No.4 の付着余 裕度は L/2 (内法スパン)では 1.15 となり,L'/2 (継手間) では 0.87 となるため、梁降伏後の付着余裕度の計算区間 は L よりも L'の算定がより正確であると判断できる。全 ての試験体において,コンクリートの圧壊や一段筋の降 伏などが生じ,その結果として最終サイクル R=1/20rad の せん断力 Q が低下したと考えられる。

3.2 主筋ひずみと梁の関係

主筋ひずみ分布を図7に示す。全試験体ともR=1/100rad 時にヒンジ計画位置の主筋ひずみが降伏ひずみに至り, 曲げ降伏を確認した。No.6(非扁平断面)は,No.1(扁 平断面)と比べて主筋ひずみが大きく,一段筋および二

図7 主筋ひずみ分布(R=1/100rad)

段筋ひずみが降伏ひずみに至った。これは応力中心間距 離が扁平断面に比べて長いためと考えられる。No.4(片 側 HR)では、主筋ひずみが HR 側よりも非 HR 側にひず みが集中する傾向がある。全ての試験体において、端部 に配筋したカットオフ筋のひずみが 1300 μ 程度に収束し ており、十分定着され、端部曲げ性能が発揮されたこと を確認した。

4. まとめ

- 扁平断面でも曲げ曲げ余裕度を 1.25 以上確保すれば、 ヒンジ計画位置で主筋降伏する。
- (2) 入力せん断応力度レベルτ_u/σ_Bが 0.040 程度であれば、 扁平梁でも R=1/20rad まで安定した履歴特性が得られ る。
- (3) HR 梁の付着の検討はヒンジ計画位置間を用いた評価 が適切である。

参考文献

- 安田稜太:梁端部に開孔を有するヒンジリロケーション構法に 関する実験研究,2021年度静岡理工科大学,卒業論文
- 2) 日本建築学会:鉄筋コンクリート構造設計規準・同解説.2018
- 3) 日本建築学会:鉄筋コンクリート造建物の靱性保証型耐震設計 指針・同解説, 1999

表 2	実験結果及び計算値
	NAME AND A DESCRIPTION OF ALL ALL ADDRESS OF ALL ADDRES

			į –									計算	但						1
いで割れ	れ強度	11. 1.	274 - Fr	最大	最大強度		曲げ終局強度			せん断終局強度		せん断余裕度		曲げ曲げ	設計用	上端筋	付着		1717-14
由げ	せん断	取八	III] / J	変	形角	一般部	端部	0.224	Qmax	一般部	端部	一般部	端部	余裕度	付着応力度	付着割裂強度	余裕	的度	破場形式
Qfu	Qsc	Qn	19X	I	Rm	Qful	Q _{fu2}		Qful	Qsut	Q _{su2}	Qful	Q _{fu2}	Q _{ful}	τ_{f}	Tbu	Tbu	Tbu	11224
kN)	(kN)	(k)	N)	(×10	⁻³ rad)	(kN)	(kN)	OB		(kN)	(kN)	Qsul	$\overline{Q_{su2}}$	Q _{fu2}	(N/mm ²)	(N/mm ²)	$\tau_{\rm f}$	$\overline{\tau_f}'$	
0.7	104.6	311	-302	40.0	-40.1		2765	0.040	1.04	216.1	313.6	0.05	1.20	1.26		2.70	1.69	1.12	F
9.2	105.4	305	-300	40.0	-40.0	299.8	570.5	0.040	1.02	510.1	296.7	0.95	1.27	1.20	3.31	5.70	1.08	1.12	F
8.8	109.3	316	-311	30.0	-40.1		467.7	0.040	1.05	317.4	317.6	0.94	1.47	1.56		3.72	1.69	1.12	F
15.3	133.1	343	-323	30.1	-30.0	320.4	399.1	0.042	1.07	397.8	339.1	0.81	1.18	1.25	4.05	3.52	1.15	0.87	FB
3.0	91.5	242	-238	30.0	-30.0	224.8	279.9	0.047	1.08	228.4	220.3	0.98	1.27	1.24	3.35	3.47	1.56	1.04	F
8.8	136.6	365	-362	30.0	-30.0	352.2	445.5	0.047	1.04	365.3	341.5	0.96	1.30	1.26	3,45	3.44	1.52	1.00	F
自 Q k1 H0 H9 R8 H5 H3	if N) 0.7 0.2 0.8 0.3 0.3 0.8	げ せん断 fu Qsc N) (kN) 0.7 104.6 0.2 105.4 3.8 109.3 5.3 133.1 5.0 91.5 3.8 136.6	け 世ん断 ^{J取入} 地 Q _{8c} Q _n N) (kN) (kl) 102 105.4 305 3.8 109.3 316 5.3 133.1 343 5.0 91.5 242 3.8 136.6 365	け 世ん断 ^東 太阳分 hg Qsc Qmax N) (kN) (kN) .7 104.6 311 -302 .2 105.4 305 -300 .8 109.3 316 -311 .3 133.1 343 -323 .0 91.5 242 -238 .8 136.6 365 -362	げ 世人断 地人画// 波人画// 波人画// 波 変) ha Qac Qmax F N) (kN) (kN) (×10 0.7 104.6 311 -302 40.0 0.2 105.4 305 -300 40.0 3.8 109.3 316 -311 30.0 5.3 133.1 343 -323 30.0 3.8 136.6 365 -362 30.0	げ 世ん断 坂入画ノ 変形角 𝑘 Q _{ic} Q _{max} R _m 𝔅 Q _{max} 10 ⁻³ rad) 𝔅 105.4 302 40.0 40.1 𝔅 105.4 305 -300 40.0 -40.1 𝔅 109.3 316 -311 30.0 40.0 40.0 𝔅 109.3 316 -311 30.0 -40.1 𝔅 109.5 242 -238 30.0 -30.0 𝔅.8 136.6 365 -362 30.0 -30.0	近しの 取入間力 変形角 一般部 2010 Qsc Qmax Rm Qfu1 N) (kN) (kN) (×10 ⁻³ rad) (kN) 7.7 104.6 311 -302 40.0 -40.1 7.2 105.4 305 -300 40.0 -40.1 7.2 105.4 305 -300 40.0 -40.1 5.3 133.1 343 -323 30.1 -30.0 320.4 .0 91.5 242 -238 30.0 -30.0 224.8 8.8 136.6 365 -362 30.0 -30.0 352.2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

※2 Trは内法スパンLをTrは継手先端間L'により算定

※3 F:曲げ破壊, FB:曲げ降伏後付着割裂破壊

静岡理工科大学 理工学部 建築学科

Department of Architecture, Faculty of Science and Technology, SIST